Learning Textual Graph Patterns to Detect Causal Event Relations
نویسندگان
چکیده
This paper presents a novel method for discovering causal relations between events encoded in text. In order to determine if two events from the same sentence are in a causal relation or not, we first build a graph representation of the sentence that encodes lexical, syntactic, and semantic information. In a second step, we automatically extract multiple graph patterns (or subgraphs) from such graph representations and sort them according to their relevance in determining the causality between two events from the same sentence. Finally, in order to decide if these events are causal or not, we train a binary classifier based on what graph patterns can be mapped to the graph representation associated with the two events. Our experimental results show that capturing the feature dependencies of causal event relations using a graph representation significantly outperforms an existing method that uses a flat representation of features.
منابع مشابه
The Role of Textual Graph Patterns in Discovering Event Causality
We present a novel method for discovering causal relations between events encoded in text. In order to determine if two events from the same sentence are in a causal relation or not, we first build a graph representation of the sentence that encodes lexical, syntactic, and semantic information. From such graph representations we automatically extract multiple graph patterns (or subgraphs). The ...
متن کاملDiscovering Causal Relations in Textual Instructions
One aspect of ontology learning methods is the discovery of relations in textual data. One kind of such relations are causal relations. Our aim is to discover causations described in texts such as recipes and manuals. There is a lot of research on causal relations discovery that is based on grammatical patterns. These patterns are, however, rarely discovered in textual instructions (such as rec...
متن کاملReal-Time intrusion detection alert correlation and attack scenario extraction based on the prerequisite consequence approach
Alert correlation systems attempt to discover the relations among alerts produced by one or more intrusion detection systems to determine the attack scenarios and their main motivations. In this paper a new IDS alert correlation method is proposed that can be used to detect attack scenarios in real-time. The proposed method is based on a causal approach due to the strength of causal methods in ...
متن کاملFinding Event, Temporal and Causal Structure in Text: A Machine Learning Approach by
Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Humans often describe their experiences through the event, temporal and causal structures they perceive. These structures are often expressed in textual forms, for example in timelines,...
متن کاملDiscovering Patterns in Multiple Time-series
In the past there has been some methodologies for solving time-series data mining. Those previous works of multiple sequences matching mechanisms are complicated and lack of comprehensive application domains, especially in multiple streaming data. Here we deal with these restrictions by introducing a novel methodology for finding multiple time-series patterns. The model is evaluated the noise b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010